PREPRINT MC35-P229-0491, MCS DIVISION, ARGONNE NATIONAL LABORATORY

STABLE PARALLEL ELIMINATION FOR BOUNDARY VALUE ODES*

STEPHEN J. WRIGHT'

Abstract. A parallelizable and vectorizable algorithm for solving linear algebraic systems arising from two-point boundary
value ODEs is described. The method is equivalent to Gaussian elimination, with row partial pivoting, applied to a certain
row- and column- reordered version of the usual almost-block-diagonal coefficient matrix. Analytical and numerical evidence is
presented to show that the algorithm is stable. Results from implementation on a shared-memory multiprocessor and a vector
processor are given. The approach can be extended to handle problems with multipoint and integral conditions, or algebraic
parameters.

Key words. Parallel algorithms, two-point boundary value problems, Gaussian elimination, stability

AMS(MOS) subject classifications. 65110, 65120, 65W05

1. Introduction. In arecent paper [11], we described a technique for solving the almost block-diagonal
system of linear equations that arise in various algorithms for solving two-point boundary value problems,
such as collocation, multiple shooting, and finite differencing. The advantage of the approach is that it can
be adapted to make efficient use of parallel and vector computer architectures, while retaining the stability
characteristics that are essential in robust software. The technique makes use of orthogonal transformations
that take advantage of the special structure of the matrices.

In this report, we discuss a similar technique based on Gauss transformations. The new “structured
elimination” technique and the structured orthogonal technique make identical use of the matrix structure,
but the former requires substantially fewer floating-point operations. Timing results are given for some
computational experiments on two advanced computer architectures. In Section 4, we investigate the stability
of this structured elimination algorithm by relating it to a block factorization algorithm, which effectively
decouples the increasing and decreasing fundamental modes when an exponential dichotomy is present and
the problem is well conditioned. We show in Section 5 how the approach can be extended to handle problems
with algebraic parameters or multipoint and integral side conditions.

Some of the details of the problem and the structured factorization approach have been discussed in [11]
and hence are omitted here.

2. The Algorithm. Consider the linear first-order two-point boundary value problem

(1) y' =M@y +q(t), t€fa,b], yeR,
(2) Bay(a) + Bpy(b) =d, deR".

Multiple shooting and finite differencing proceed by choosing a grid

a=1 <t2<...<tk+12b

and seeking vectors s; that approximate the true solution y(¢;) for ¢ = 1,... k+ 1. In both methods, linear
systems of the following form must be solved for s1,s2,..., sp41:
Ba Bb 51 d
A Oy S2 1
(3) Ay (O 53 —| f
A Cy Sk41 Ir

* This research was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U. S.
Department of Energy, under Contract W-31-109-Eng-38. A grant of computer time at the North Carolina Supercomputing
Center is gratefully acknowledged.

t Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 2

Here, A;, C; € R**™, f; € R". Collocation techniques give rise to similar systems, after condensation has
been used to remove some of the parameters. In the case of separated end conditions, we can assume that

Ba, By, and d have the form
B, |1 0 | da
wes[] omela] o= ln]

where B, € R™" and By € R"~D*" 1In this case, the system is usually reordered as

Ba 51 da
A Oy 52 1
Ay Oy 53 J2
(4) N =1
Ap Gy Sk fe
L By | | sp41 | L dy |

Our algorithm starts, as in [11], by choosing an integer P < k/2, and a set of “separator” indices
O=ko<hki<...<kp=kFk, k‘j+12]€]’—|—2,j20,...,P.

Using these indices, we divide the coefficient matrix into P “slices,” where slice j consists of rows (k;_1 +
Dn+1,...,(k + 1)n, with the (structural) zero columns deleted. For example, the first slice is

Al Cl fl

AZ CZ fZ

) o |
Akl Ckl fkl

We now perform Gaussian elimination, with row partial pivoting, on the submatrix obtained by omitting
the first and last block column for each slice. In (5), the first n steps of this process yield the factorization

. i ~ . C
(6) [01] =L1gPin.. . LiaPi sl 1Py [A;] ’

where Py ; € R*™** 4§ = 1,... n, are permutation matrices; El,i € R™X 4 = 1,...,n, are Gauss
transformations; and U; € R™*" is upper triangular. (The information needed to construct each El,i can be
stored in the locations formerly occupied by the eliminated elements of [C] AT]? | while the permutation
data for the whole process requires an integer array with dimension equal to that of the right-hand side of
(3).) Applying the transformations across the first 2n rows of the matrix (5), we obtain an equivalent system
whose augmented matrix is

Gy Ui Ey 91
G2 0 Cz f2
Az C3 I ’
Akl Ckl fkl
where
Gy U Ey 91] = = = [z‘h Ci 0 f1]
= =~ = | =Li,Pin...L1oP1 L1 1P .
|: G2 0 CZ f2 1, 1, 1,241 24114711 0 A2 CZ f2

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 3

Repeating the process, for rows n41,...,3n, we find permutation matrices P> ; and Gauss transformations
Lyt =1,...,n, such that

Gy Ra Es 92] = = 7 [Gy Cy 0 fz]
= = %F | = LopnPoy.. . LooPyolo P .
|: G3 0 03 f3 2, 2, 2,242,282 1421 I 0 AS 03 f3
Proceeding in this way for stages 3,...,k; — 1, we finally obtain the equivalent system
Gy U, E; g1
G Uy Ey 92
(7) : KPR :
Gry-1 Uki—=1 Eky—1 | gky—1
Ay Ch 1

A reduced system, involving only (P + 1)n variables and equations, can be formed by taking the last
block row of each partition after the factorization above has been applied. As in [11], this system has the
form

Bia N Bb S1 El

Aq Ql ~ Ski41 jil

(8) Az Oy Sk2+1 —| f
fip éP Skp+1 .fP

Since the form of (8) is identical to that of the original system, the elimination procedure just described can
be applied recursively. Eventually, a 2n x 2n system of the form

o) FdInaEE

is obtained. This can be solved by standard Gaussian elimination with partial pivoting. The “intermediate”
unknowns can be recovered by back substitution, using the matrices U; and E; and the right-hand sides ¢;
which were obtained earlier in the factorization process.

Different variants of the overall algorithm can be distinguished by the number of levels used to obtain
(9) from (3). A serial (one-level) algorithm would set P = 1 and hence go directly from (3) to (9). On a
shared-memory machine, it may be appropriate to use a two-level algorithm, in which P is set equal to the
number of available processors. The first stage of the reduction (which “compresses” (3) into (8)) can be
carried out in parallel, while the compression of (8) to (9) can be performed on a single processor. On a
vector processor, a “cyclic reduction” version, which uses log, k levels, is most appropriate. At the first level,
we set P = k/2, so that each partition consists of just two block rows. A reduced system of approximately
half the size of the original system is produced. The code can be written so that the innermost (vectorized)
loops have length k/2. This procedure is applied recursively; at each level the size of the remaining system
is halved. For more details, see [11].

For future reference, note that the elimination step (6) can be recast as follows: suppose that ! of the
pivot rows (0 <! < n) are drawn from the first n rows of the original matrix (i.e., the C} rows), so that n —/{
of the pivots come from the A5 rows. Then we can write

(10) U] [L1 o R 0 P, P Oy 0 Ch
0 | |13 I 0 0 P P, 0 O As |’
where Ry, Op and Oy are n x n permutation matrices, L} is n x n and unit lower triangular, L? is n x n, and

o o [L 0
() r=ldd] =[]

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 4

TaBLE 1
Operation counts and storage requirements for four algorithms, assuming separated end conditions (k = number of mesh
points, n = dimension of y, p = number of left-hand end conditions, R = number of right-hand sides)

Algorithm Operation Count Storage
LU (row pivoting) [3 + 3pn? + R(4n + Qpn)] 3kn?
DECOMP/SOLVE [% n? + (4R + bp)n? — 2np?] 2kn?
Structured QR k[%n (15R + 30)n?] 4kn?
Structured LU k[Zn® + (8R — 2)n?] 4kn?
TABLE 2
Operation counts and storage requirements for four algorithms, assuming nonseparated end conditions (k = number of

mesh points, n = dimension of y, R = number of right-hand sides)

Algorithm Operation Count Storage
LU (row pivoting) k[233 3 4+ 8Rn?] 4kn?
DECOMP/SOLVE [}4 n3 4+ 4Rn?) 3kn?
Structured QR k[$n® + (15R—|— 30)n?] 4kn?
Structured LU k[Z£n® 4+ (8R — 2)n?] 4kn?
Note that
oo] o .
=Liplipn_1...L11.
[21 tndin-1 1,1

The notation here is similar to that of Mattheij [9]. This is no accident, since the style of stability
analysis in Section 4 is similar to that used in [9].

3. Computational Results. Variants of the structured elimination algorithm have been implemented
on the Alliant FX/8 vector multiprocessor at Argonne National Laboratory and on the CRAY Y-MP at the
North Carolina Supercomputing Center. In this section, we compare these codes with implementations of
other algorithms for solution of the linear system arising from finite difference and shooting methods. These
are

e a plain row partial pivoting code. The ordering (4) is used if the end conditions are separated.
Otherwise, left-hand and coupled conditions are listed first, and right-hand conditions are listed at
the end. We denote these codes by ROWPP.

e the DECOMP and SOLVE routines from the PASVA codes [7]. The DECOMP routine uses alternate row
and column pivoting (as does the algorithm described in Varah [10]) but always eliminates by rows.

¢ the structured orthogonal factorization algorithm from [11]. These codes are generically denoted by
SQR.
The structured elimination codes are referred to by the name SLU. The structured codes are subcategorized
according to the number of levels. For example, the one-level, two-level, and cyclic reduction variants of the
SQR code are named SQR-1, SQR-2, and SQR-CR, respectively.

Table 1 compares storage and operation counts for the four algorithms, assuming separated end condi-
tions. In tabulating storage requirements, we assume that the multipliers and Householder vectors generated
during the factorization are stored, for possible later use with different right-hand sides. For the two struc-
tured algorithms, the operation counts are independent of the number of recursive levels in the factorization
process. Structured elimination requires about a third as many operations as structured orthogonal factor-
ization, and they both have higher counts than the “serial” algorithms. However, operation counts are poor
predictors of runtime, particularly on advanced computer architectures with their vectorization and pipelin-
ing capabilities. The structured algorithms are not as slow as Table 1 would suggest, even in serial mode.
Table 2 contains the same information for the case in which the end conditions are completely coupled. The
structured algorithms are indifferent to whether the end conditions are separated or nonseparated, whereas
the operation counts for the serial algorithms increase markedly in the nonseparated case.

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 5

TABLE 3
Box method, co-norm error in the computed solution for Problem 1A

k=32 k=128 k= 1024
ROWPP, DECOMP, SQR-1, SLU-1 | .28(-1) .17(-2) .26(-4)

TABLE 4
Multiple shooting, oo-norm error in the computed solution for Problem 1A

k=8 k=16 k=64
ROWPP, DECOMP, SQR-1, SLU-1 | .17(-3) .14(-4) .35(-6)

The stability properties of the algorithms are tested by using them to solve two small problems based
on the same ODE, but with different end conditions.

Problem 1A a=0,b=m,n =3,

1—19cos2t 0 14+ 19sin2t —1 4+ 19(cos 2t —sin 2t)
y(t) = 0 19 0 y(t) + ' —18 :
—1+19sin2t 0 1+ 19cos2t 1 —19(cos 2t + sin 2t)
y1(0) = 1
ya(m) = "
y1(m) + 3ys(w) = 4de™.

The solution is y(t) = e!(1,1,1)T. A fundamental solution for this problem is
sint 0 —cost

Y(t) = 0 1 0 diag(e?0, !9t 7 181),
cost 0 sint

Problem 1B (Mattheij [9]) Same as Problem 1A, but with end conditions

y1(0) = 1
y3(0) +ys(m) = 14¢€"
y2(0) + ya(m) = 14€".

Again, the solution is y(t) = e’(1,1,1)T.

The code dverk is used as the IVP solver in the multiple shooting code, with the global error tolerance
set to 10719, The k subintervals are equally spaced in both codes. A midpoint-rule discretization is used in
the finite-difference code (yielding the “box method”). Results from single-precision implementation on the
CRAY Y-MP are reported.

Tables 3 and 4 show maximum errors in the computed solutions for Problem 1A. The behavior of the
four codes is identical. Since the end conditions are separated, the two “serial” codes use the ordering (4); the
matrix is now banded, and any reasonable partial pivoting strategy can be expected to be stable. The errors
are consistent with estimates that take into account discretization error (in the case of the finite difference
method) and conditioning of the problem.

Tables 5 and 6 show errors in the computed solutions for Problem 1B, which has coupled end conditions.
In this respect, the behavior of the codes ROWPP, SQR-1, and SLU-1 was indistinguishable. The code DECOMP
does not properly decouple the modes, and so gives large errors.

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 6

TABLE 5
Boz method, co-norm error in the computed solution for Problem 1B

k=32 k=128 k=1024
ROWPP, SQR-1, SLU-1 | .28(-1) .17(-2) .26(-4)
DECOMP 24(42) 24(42) 24(+2)

TABLE 6
Multiple shooting, oo-norm error in the computed solution for Problem 1B

k=28 k=16 k=064
ROWPP, SQR-1, SLU-1 | .17(-3) .14(-4) .35(-6)
DECOMP 24(42) 24(+2) 24(+2)

As expected, the compactification algorithm produces very large errors when applied to both 1A and
1B.

Four test problems are used to compare the relative execution speeds of the codes on the Alliant FX/8

and the CRAY Y-MP:
Problem 2 (Ascher and Chan [1]) a=0,6=1, n = 2,

—Acos 2wt w + Asin 2wt
! _ —_ —_
y(t)= —w + Asin 2wt Acos 2wt y(t) + f(0), y(0) =1, wn(l)=e,

with f(t) chosen so that y(t) = e'(1,1)7.
Problem 3 (Brown and Lorenz [3]) a=—1,6 =1, n =4,

2

11 t ! t ! 1]
—ey — =y + =2+ 2 em” cos mt —|—§7TtS1n7Tt,

2 2
'’ =z
Y~ =—1 y(l)=e?V
2(-1)=1 2(1) = e Ve
(We use € = .001.)
Problem 4A a =0,b=1,n=25,
—A1 cos 2wyt 0 w1 + Aqsin 2wqt 0 0
0 — Ao €08 2wot 0 wy + Ao sin2wat 0
M(@)= | —wi+ Aisin2wit 0 A1 cos 2wt 0 0 ,
0 —Wws + Ag sin 2wot 0 Ay cos 2wot 0
0 0 0 0 As

q(t) = [q1(1), g2(t), g3(1), qa(t), — (A5 — 1)e']",

with boundary conditions

|
o

_ yi(1)
w(0) =1, —y3(1) + ya(1)
=4y (1) +5y5(1) = e

Ny
V]
~
=)
s
+
S
Ny
ot
~
=)
s
Il
ot
|
o

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 7

TABLE 7
Alliant FX/8, one-processor timings for linear system solvers, k = 1024 (times in seconds)

Problem | ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR
2 424 667 .816 1.06 576 .649
3 1.31 1.94 3.21 4.50 2.08 2.53
4A 1.94 2.71 5.42 7.79 3.48 4.40
4B 3.44 3.28 5.42 7.78 3.47 4.37

We use Ay = 200, Ao = 50, A3 = 10, w; = 1, and wy = 25. The components of ¢(t) are chosen so that the
solution is e?(1,1,1,1,1)7. This problem has a fundamental solution

coswit 0 sinwqt 0 0
0 cos wal 0 sinwst 0
Y(t)=| —sinwit 0 coswit 0 0 diag (e71f eA2l Mt ghat cAst)
0 — sinwst 0 coswat 0
0 0 0 0 1

and is obtained by replicating Problem 2.

Problem 4B Same ODE and solution as Problem 4A, except that three of the boundary conditions are
coupled:

y1(0) = 1
y2(0) +4y5(0) + ys(1) = bH+e
=5y1(0) +w(l) = —5+e
3y2(0) —ys(1) + ya(l) = 3
=4y (1) +5y5(1) = e

Tables 7 and 8 show execution times on one processor of the Alliant FX/8. The -0g option was used
during compilation, so the vectorization capabilities of the processor were not used. Comparing these tables
with the operation counts in Tables 1 and 2, we see that the time required by the DECOMP code is greater than
expected, while the time required by SQR-1 is less than expected. This result is at least partially due to the
large amount of data manipulation performed by DECOMP (in the interests of economizing on storage) and the
lack of such data manipulation in the SQR code, which avoids the need for pivoting altogether. The “cyclic
reduction” codes take somewhat longer than their sequential counterparts, partly because their data access
patterns are not localized. On problem 4B (the only one with some coupled end conditions), the time needed
by ROWPP and DECOMP increases markedly over the time for Problem 4A. In fact, SLU becomes competitive
here even without the benefit of vectorization or parallelization. In addition, we note that DECOMP always
gives inaccurate answers for the coupled end-condition Problem 4B, because of its failure to decouple the
increasing and decreasing fundamental modes.

Tables 9 and 10 give execution times for the codes when they have been compiled to run on eight
processors of the Alliant without vectorization. The structured codes speed up as predicted, although the
bottleneck of solving the reduced system on a single processor is particularly noticeable when £ = 128.
Defining speedup as the ratio of time for fastest serial algorithm to time for best parallel algorithm, we see
from Table 11 that the SLU-2 code demonstrates excellent efficiency for the larger problems, especially when
the boundary conditions are not separated.

Results for vectorized implementations on the CRAY Y-MP are shown in Tables 12 and 13. The “cyclic
reduction” versions of the structured codes vectorize very efficiently, as can be seen by comparing their
execution times with the corresponding sequential versions. Speedups over the best serial codes fall off

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 8

TABLE 8
Alliant FX/8, one-processor timings for linear system solvers, k = 128 (times in seconds)

Alliant FX/8. Speedups, defined as time for fastest ome-processor algorithm divided by time for fastest eight-processor

algorithm

Problem | ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR
2 .065 118 119 157 .085 .098
3 A72 291 416 .b73 273 322
4A 247 .399 692 .989 449 .543
4B 445 468 697 990 446 .538
TABLE 9

Problem | ROWPP DECOMP SQR-2 SLU-2
2 .359 .695 136 104
3 749 1.65 .466 311
4A 963 2.14 765 506
4B 1.37 2.79 766 505

TABLE 10

Problem | ROWPP DECOMP SQR-2 SLU-2
2 .051 114 .037 .035
3 .096 .242 091 .069
4A 124 301 143 .100
4B 181 387 142 .100
TaABLE 11

Problem | k=1024 k=128
2 4.08 1.86
3 4.21 2.49
4A 3.83 2.47
4B 6.50 4.45

Alliant FX/8, eight-processor timings for linear system solvers, k = 1024 (times in seconds)

Alliant FX/8, eight-processor timings for linear system solvers, k = 128 (times in seconds)

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs

CRAY Y-MP, vectorized code on ome processor, k = 1024 (times in milliseconds)

TABLE 12

Problem | ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR
2 34.3 48.8 117. 10.8 83.0 7.3
3 84.7 134. 300. 51.6 194. 40.0
4A 111. 171. 415. 89.4 263. 71.4
4B 233. 245. 413. 89.5 261. 71.8
TABLE 13

CRAY Y-MP, vectorized code on one processor, k = 128 (times in milliseconds)

Problem | ROWPP DECOMP SQR-1 SQR-CR SLU-1 SLU-CR
2 4.3 6.1 14.6 2.2 10.3 1.6
3 10.6 16.8 374 10.1 24.2 7.3
4A 13.8 214 51.8 17.3 32.8 12.5
4B 29.2 30.7 51.5 17.3 32.6 12.5

somewhat when the end conditions are separated and n = 4 or n = 5, since in these cases the codes ROWPP
and DECOMP achieve a small amount of vectorization in the factorization of each of the blocks in the coefficient
matrix in (4).

4. Stability of Structured Elimination. The stability of the SQR algorithms has been examined in
[11] by using standard tools for the analysis of orthogonal factorizations from the numerical linear algebra
literature (see, for example, Golub and Van Loan [5]). Similar tools can be used to analyze the SLU algorithms,
since each variant of SLU is simply Gaussian elimination with row partial pivoting, applied to a row- and
column-reordered version of the coefficient matriz in (3). However, it is well known that, even with row
pivoting, element growth can occur in the upper triangular factor which is exponential in the size of the
matrix (in our case (k + 1)n). Although such growth is unlikely in practice, it is nevertheless desirable to
use the structure of the matrix in (3) and the properties of the underlying problem (1), (2) to obtain a
more realistic bound on the error growth in the method. We do this by using a style of analysis that was
developed by Mattheij in a series of papers (see, for example [8], [9]). Our approach is first to describe a
block factorization algorithm, which is similar to “stable compactification” (Section 4.2). This algorithm
performs the required decoupling of the growing and decaying modes. Then, in Section 4.3, we show that the
“serial” variant of SLU is essentially equivalent to this block algorithm under certain reasonable assumptions.

4.1. Dichotomy and Conditioning. We start by briefly reviewing the salient points of the theory of
dichotomy and conditioning, from Ascher, Mattheij, and Russell [2] and Mattheij [9].

The ODE (1) is said to have an exponential dichotomy if there exist real positive constants K, A, and u
and an integer { with 0 <! < n, such that, for some fundamental solution Y'(t) of (1),

IV (2)P,Y =1 (1)|| Ke M=t

1Y (&) Y = (@)

x>t

- bl

Kent=o), t>x

- bl

<
<

(12)
where P, and P, are as in (11). Any other fundamental solution Z(¢) of (1) is related to Y'(¢) by

Hyy

Hay

z0=vwr=vo | 7 5],

where H € R"*" is constant and nonsingular, Hy; € R?=Dx(=0 "ete.
Similarly, we can consider the linear recurrence given by the discrete system (3), namely,

(13) Aisi + Cisip1 = fi, i=1 k.

gy

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 10

This recurrence is said to have an exponential dichotomy if there exist positive constants K, o > 1, p > 1,
and an integer [as above, such that for some fundamental solution {V;} (with A;Y;4+C;Y;11 =0,i=1,...,k)
we have

Ve Pa Y3l Kod=' i>j+1,
(14) |V;:BYH < Kp, i < J.

IN

As in the continuous case, any other fundamental solution {Z;} of (13) can be related to {Y;} by

1=1 k.

(15) &:mHzm[mlH”y e

Hy1 Ha

{Z;} is said to be consistent with {Y;} if Hyy in (15) is nonsingular. Since the exact dichotomic solution
{Y;} is not obtainable in practice, any consistent solution {Z;} can in theory be used to decouple the
increasing and decreasing fundamental modes. It is sufficient to define consistency constant L by

7 def ||V Hon |
min)jy =1 [V Hqqul|

(where Y} and Y{? are the first (n — [) and last | columns of Y7, respectively) and assume that L is of
“moderate size.”

It is known [2, p. 289] that if (3) is obtained by applying finite differencing to (1) with uniform mesh
spacing h = t;41 —1t;, and if the ODE (1) has the dichotomy (12), then the recurrence (13) has the dichotomy
(14) with o = e* and p = e#h.

From here until the end of the paper, we work solely with (3) and (13) and assume that the dichotomy
(14) applies. We further assume that C; = —I, ¢ = 1,..., k. This assumption is true for multiple shooting
and the condensed form of the collocation equations; it can be obtained for finite differencing by multiplying
(13) through by —C; . We can therefore rewrite (13) as

(16) sit1 = Aisi — fi

Suppose that we choose some orthogonal matrix Qo € R**™ and generate a sequence {Q;},7=10,...,k
of orthogonal matrices by using the formula

(17) AiQi—1 = Qi
We require that A; have the form
AL AL

This could be obtained, for example, by defining @;, A; as QR factors of 4;Q;_1. If {Z;} is a fundamental
solution of (16), we can use (17) to write

Zigr = AiZi = (Qf Zig1) = M(Q_1 %),
so that W; = QT Z;, Wi = I, defines a fundamental solution of the homogeneous recurrence
Wip1 = Ajwy, 1=1,... k.
It follows from (18) that each W; has the form

|: I/Vill VV;Z :|

(19) Wi=1 "9 e

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 11

Note, in particular, that

J

[Tam= i<y
r=g

22717722 \—1 _ 22 A 22 22
Wi (VV]'+1) = Ai—lAi—Z"'Aj+1’

W (Wig)™
i>j+ 1

As a special case of [2, Theorem 6.30], we have the following:

THEOREM 4.1. Suppose the dichotomy (14) holds, with fundamental solution {Y;}, and that the funda-
mental solution {Z;} with initial condition Zy = @y is consistent with {Y;}, with L of moderate size. Then
there are moderately sized constants Ky > 1 and K5 > 1 such that

J
ITIAN M < K™, i<y,
r=t

AP A7, AR, < Ked! T iz 41

4.2. A Structured Block Factorization. Given the assumption C; = —1, we can negate all but the
boundary condition rows of (3) and perform an obvious row and column reordering to obtain the matrix

1 0 —A;
—As 1 0 0
A 7 . .
(20) A=
1 0 0
—Ap | 1 0
L Bb Ba

In this section, we describe a block factorization algorithm for A and show that it gives a stable way of
solving the system (3).
Using the orthogonal matrices Qp, @1, ..., Qr of the previous section, define
= diag(Q7,Q%,...,Q¢,)
= diag(QlaQZa"'anaQO)~

From (17) and (18) it follows that RAD has the form

O =

T 0 —A%l _A%z-
0 I 0 —A%Z
—A%l —A%Z I 0
0 —A%Z 0 I
—Aél —Aéz I 0
0 —A%Z 0 I
RAD =
I 0
0 I
—A}Cl —A}CZ I 0 0 0
0 —A%Z 0 I 0 0
L (BvQr) (BaQo)

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 12

Using the n x n permutation matrices P, and Py from (11) as building blocks, we define (k+ 1)n-dimensional
permutation matrices Py, i = 1,...,(k — 1), by

7 -

P, P; (block row %)

b= P, P, (block row i + 1)
1
L I -
Let
P=PFP,_1Py_5...P.
Applying these permutations to the rows of RAD, we obtain
PRAD =
[—ALl —Al2 1 0 0 0]
0 I 0 0 0 —A%
0 —At —AlL? 1
—A% 0 1 0
0 A AL 1
—AZ? 0 1 0
-AL AT 0
0 I 0 0
I 0 0 0 0 0 —All —AP?
0 0 0 —AZ2 10 I 0 0
L (ByQr) (BaQo)

Now, without further pivoting, we can perform block elimination in an obvious way, stopping when the final
2n X 2n submatrix is reached. We thus obtain

PRAD = L'U’,
where
-7 _
Ly I
La 1
E/ — .
Ly_o I
Hy Hy_o Hp_q |1
L I |

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 13

[Uy fzjl R (:;1 i
Uz E2 GZ
U/: .
Up—r | Bro1 Gra
Ry R-
L Bka BaQO_
~ 0 0 ~ —All —Al2 ~ I 0
L L t+1 t+1 .
b=ly g o= TV P m=[00]

—1 -1
H; [_A%;Si+1 _APSE)HAﬁl]’ Gy = [00] i=1,...,k—1,

Hy_1=Hyp_, +Ek—1,

5 | —Altsgt oo L [Al —ANX
Rl_[0 1] B ~Ty |’

_ Allall 11 _ A22 422 22
SZ—AZ Ai—l"'Al’ E—Al Ai—l"'Al’

k=1
X =STTAP =Y ST AT
j=1

Finally, we can find a 2n x 2n permutation matrix ﬁ, unit lower triangular L and upper triangular U such
that
z oz - Rl Rz]
LU =11 .
[By@Qr BaQo

Incorporating this into the overall factorization, we obtain

I 0 P
21 - | PRAD = L
(21) |y 1§ |Pran=i,
where
- _
Ly I
Ly T
L= -
Ly_o I
A . AL, AL
| Y H} ... Hi, Hi_,|L |

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 14

Uy fzjl R (:;1
Uz E2 GZ
[7: ~ ~ ~ ’
Up-1| Er—1 Groa
_ v
and
E[il _ o~ E[Z - Hkl—l _ i~ E[k‘—l
|:g22:|— |: 0 :|,Z—1,...,k_1, [E[%_l —H 0 .

The entire process is almost identical to stabilized compactification (as described in [2, pp. 157-161]),

the only difference being in the handling of the final 2n x 2n block. Stability of the factorization (21)
follows immediately from this relationship. Alternatively, from the standard viewpoint of numerical linear
algebra, stability follows from the fact that element growth in the L and U factors is bounded by reasonable
quantities. To see this, define

def

7 = max(L [[Al2, .- ([4&ll2, | Ballz, [1Bs]]2),
and note that
T > [JAill2 = [Aill2 > 1A,
> AN 2, 7> ||AP|2, i=1,... k.

We have from Theorem 4.1 that

1572 < (pE)p™,
ITill: < (K2/o)0™".
Hence
k=2 E—1
SO+ 1 Heoall: <) AT 2 + IATSEE AT 2] + AP
i=1 i=1
E—1
< T+ ISl + T
i=1
< (T—i—Tz)Kl pl—l—r.

In addition,

< p[(lf(zT

1Xlle < (Kup)(afo)r 57! + 720 g i 4] < £E
Idle < 7

10l < 3,

A

IGll: < (Fafa)o™.

Note that if ¢ = e*” and p = e#" where h is a finite difference mesh width, and if Ah < 1 and ph < 1, then
terms such as 1/(p — 1) and 1/(po — 1) are O(h™1).

For future reference, we state the result as a theorem:

THEOREM 4.2. Provided that the assumptions of Theorem 4.1 are satisfied, the factorization (21) is
stable.

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 15

4.3. Relating the Block Factorization to SLU. We now examine the “serial” version of structured
elimination and show how it 1s related to a block factorization for a particular choice of QJg. This relationship
can be used to prove the stability of SLU.

Recall that (10) and (11) depict the first of k& + 1 stages of the factorization process. Note that in
this stage, a total of n — [rows were exchanged between the first and second block rows. Throughout the
remainder of the paper, we make the following assumption:

AssuMPTION 1. The ODE (1} has an exponential dichotomy, with | decreasing fundamental modes
(1 <1< n). At each stage i of the structured elimination algorithm (fori=1,... k), exactly n—1 rows are
exchanged, by row pivoting, between the i-th block row and the (i+1)-st block row. Moreover, the collection of
n—1 rows that is swapped out of the first block row is passed down, intact, through block rowsi =2,3,... k.

This assumption was always observed to hold for the examples reported in Section 3. It means that if,
for example, row 1 of block 1 is swapped into block 2 during the first stage, then this same row is eventually
pivoted to the bottom of the matrix, that is, to somewhere in the k-th or (k + 1)-st block rows. We stress
that this does not mean that “reimbedding,” as described in Dieci, Osborne, and Russell [4] and Keller
and Lentini [6], does not occur. On the contrary, in all the test examples, we observe reimbedding in the
form of occasional changes in the internal pivot sequence from one stage to the next. The last statement of
Assumption 1 refers to the collection of rows that are exchanged between successive stages, rather than the
pivot sequence within a stage.

Using Assumption 1, we can view stage ¢ of the factorization process (for ¢ = 1,2,...,k — 1) as a
premultiplication of the remaining submatrix by

L; R; POy,

where, for ¢ = 1,2,...,k— 1, F; is as defined in Section 4.2, and

/ -
1

L} (block row)

L= L? I (block rowi+1) |-

L I -
o -
I —
R; = R; (block row é) |,

I

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 16

I

0; = O; (block row i + 1)
I

I

Here, L} is unit lower triangular, and R; and O; are permutation matrices. Before the very first stage, the
matrix A is multiplied by some initial permutation Oy = diag (Oo, I,I,...,I). For the final stage, in which
the remaining 2n x 2n block is factored, we define a 2n x 2n permutation matrix Ry, and premultiply by
L Ry, where

Ly

Ry |

and L} is 2n x 2n unit lower triangular. At the end of the process, a block upper triangular matrix U is
obtained, with

(22) (LkRk)(Lk_le_lPk_lOk_l) e (L1R1P101)00A = U,

where A is as in (20).
We now rework (22) so that it is more directly comparable with the block factorization (21). To start
with, simple manipulation involving the permutation blocks in R; and O; yields

(LkRi)(Lg-1Ri-1Pe-10g 1) .. .(L1R1P1O1)Og

23 =
(23) = R(LyLy—1Py_1Ly_2Pyr_o...PaL1P1)0O,

where

R = diag (Rl, Rz, ceey Rk—l, Rk)
0O = dlag (00,01,02,...,Ok_1,1),

and, fore=1,...,k—1, EZ has the form

I

5
Il
1
ISR

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 17

where

L} = RTLIR;
L} = LR,

For the final elimination matrix, we have used the notation
Ly = RFLy Ry = diag (I, 1,...,1,L}), where Lt = RT LRy,

We can then use the following result, which is similar to property 8.56 of Mattheij [9], to isolate the “row
exchange” matrices Py, ..., Pg. Its proof is simple and hence is not included here.
LEMMA 4.3, Fori=1,...,k—2,

Py_1Py_o.. . Piy1Li = LiPy_1Py_s... Py,

where
-7 _
I

Il

. Paﬁf I

L, = 7

B I

PbLZ2 0 0 ... I 0

Lemma 4.3 can be used, together with (22) and (23) and the definition of P, to yield
(24) RL™'POA=U,

where, defining Lj, = Ek_l for consistency, we have

L=t = Ekik—lik—z R

Apart from some permutations internal to the blocks, the back-substitution part of the solution process can
be viewed as premultiplication by L='P. Suppose the vector z € R¥+tD" ig partitioned as

E Uk k41 Zk+1)T

_ 1.1 .2 2
Z_(Zbazaazbaz <12y Ray % ' ~a

a’ bl

where zi € R*~" and 2, € R'. Then

2 1 .3 2 Eo_k—1 _1 _k _k+1 _k+1\T
Pz = (23, 25,25, 25y > 24 » Za 3 %p> Zar 2y Zg)

Fori=2,...,k—1, the subvector (zZ‘H i) is affected only by premultiplication by Li_1 and L;. Meanwhile,
the next-to-last subvector (2}, 2%y is affected by every L;. We use the following notation:

° (zé"'l, %) is transformed to (22"'1, z¢) when premultiplication by Eirl is performed;

o (“z},72F) denotes the transformed version of (z}, %), after L1, ..., L; have been applied.
For later reference, we also set

k—1,1
z
b
141 sk k—1_k
s q1 |z . z -1 z
(25) Z = LZ |: %Z :| y = 1a . 'ak_ 1a |: gk-l—l :| = Lk Zk-l—la)
a b

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 18

so that z = (Z1,..., 2**1T is the final outcome of the application of L1 P. Note that since the L} (i =
1,...,k) are row and column permutations of unit lower triangular matrices, they are certainly nonsingular.
Using the notation of Lemma 4.3, we have, upon premultiplication by L;_1, that

(26) []

Za

I

B = t+1
P.L7_, [;ﬁl] + [sz']

a Z(l

e S
- (Li)a1 (LiZ)22 zi1 22|

(Here, as earlier, we have used (H)11 to denote the leading (n —{) x (n —[) submatrix of a generic n x n
matrix A, with the remaining blocks Hys, Hay, and Hsg defined accordingly.) Examining the last block row,
we see that

(i-1) 1 . i (i-2),1
(27) [(z’-1)z§l-7|-1] = PL, [5231] + [(i—Z)ZZc]

_ (L) (L) 5,@ N (Z:—Z)zl}
B 0 0 Zi—1 (z—z)zg .

a

By combining and assembling the nontrivial parts of (26) and (27), we find that

(=12 I (L2)] 622 (2 0] =

~b — bi—1)12] by_1)11 b
(28) [%] [0 (LF_1)22 S I OIS P N A
We now show that (28) is a stable recurrence by relating it to the block factorization described in Section
4.2. The block factorization can be initialized in the following way: Define @1 = Of , and then choose Qg in
such a way that QT A;Qq is upper triangular. The remaining matrices @2, ..., Q) can then be obtained as

in (17) and (18), leading to the factorization (21). We need the following assumption:

ASSUMPTION 2. The matriz Qg obtained by the procedure just described induces a consistent fundamental
solution {Z;} (with Zy = Qo) of the recurrence (16), with a consistency constant of moderate size.

Intuitively, it seems almost certain that this assumption will be satisfied. The first n — [rows of the
reordered matrix QfAl = OgA; tend to correspond to the “larger” rows that are exchanged with the second
stage. Postmultiplication by Qg yields A1l and A%2) which can be expected to satisfy the inequalities of
Theorem 4.1, with K7 and K3 not much larger than 1.

Comparing (21) with (24), we find that

I 0

(29) RL™! (PORTPT [0 QT D L=UDU".

Clearly, by inspection of the structures of D, U/ and U, we see that both sides of this equation are block
upper triangular matrices. We examine the structure of the left-hand side more closely. Using the notation
W:Oi—lQia i:1a3a"'aka (V1:OOQ1:I)a Vk+1:I,

we have ORT = diag (V1, Va, ..., Vi, Viy1). Hence

(30) PORTPT =

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs

[(Va)11 0 0 (V2)12
0 (V1)a2 0 0
0 0 (Va)11 0 0 (Va)iz

(V2)21 0 0 (Vz)zz 0 0
0 0
(V3)a1 0
(Vi)11
0
0
(V)21

0
(Vi—1)22
0
0

0

(V)1
0

0
(Vi)22

I

19

where the lower right identity block is n x n. Further, from the definition of L in Section 4.2, 1t 1s easy to

see that
[
Ly I
o Lo I
(31) o i]i=
I
H Hy Hyp_» Hiov | ars
L 0 0 0 0 L

When the matrices (30) and (31) are multiplied together, we obtain the following block lower Hessenberg

matrix, which we denote by J%:

- I 0 -
0 _ T pT | _
J _(PORP)[O HT]L
[TN T T
T J32 T3
0 Jlg_z’k_l 0
; ; Jh—1k-2 Jk—01 k-1 Jk—olk ;
i1 ko Ik k-1 ‘gk,k ‘gk,k+1
L O 0 0 Jrs1p Jot1p4r

Each Jﬁs (1 <r,s<k—+1)denotes an n x n block, and they are defined as follows:

_ [ik —(Vig)2 A]

0 —
Jig = _ 0 (Vi)as | t=1,...,k—1,
Jz?H—l = 8 (‘/Hbl)lz ’ 221,...,]6'—2,
[0 0
o —1,. k-2
i+l | (Vig1)21 —(Vz’+1)22A22_|2_1 |’ ! T '
g = —(V1)110A%15f+11 —(Vl)llA%15f+l1Azl-|2-1 i=1...

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 20

0 _ [—nAalsyt —(viuAS AR
kb1 i (V)21 —(Vi)22AZ2 ’
B = | Ui |ari
[(Vi) -
e T < o
; : = Vi mn L.
Kk en _ W)z
We now define a sequence of matrices J¢, i =0,1,...,k by
(32) Ji=1TL;...L1 J°

The following lemma summarizes some observations about each J?:

LEMMA 4.4.

(i) Jf_zyizo, j=0,1,..k+1,:=34,.. k+1;

(ii) Jz?;l—l,i =0,i=1,2,...k;

(iii) J]]'+2,i = J]Q+2VZ», j=0,1,....k=3,¢=0,1,.. ., k+ 1.

(iv) Jﬁi:J]]»iforj: 1,2,...0k—Tlandi=01,... k+ 1.

Proof. (i) follows from the fact that each of the “block elementary” matrices L; is lower triangular, and
so each J* is block lower Hessenberg. For (i), note from (29) that J* is block upper triangular, and so
Jz'k+1,z' = 0. Premultiplication by L; affects only block rows 7, i + 1 and & of Ji~', and no structural fill-in is
created in block row i. It follows that Jz'k+1,z' = Jzk+_11,z' =...= Jii+1,i = 0. Note for (iii) that transformations
Ly, ..., Ej affect only block rows 1,2,...,j+ 1 and k of the target matrix J°. In particular, block row j + 2
is unaltered. Assertion (iv) follows from the fact that rows 1,...,;j are unaffected by the transformations
Lj-|—1,~~~,Lk~ |

From Lemma 4.4 (ii), (iii), we have for i = 1,..., k — 2 that

0=Ji,; = PTG+ 00
0 0 i1 0 0
33 = - - =1 .
(33) [(Li)2r (L7)a2] bt [(Vig1)2r —(Vig1)22A7]
Fori=2,...,k—2

bl

Jist

7,8 Pai?—ljf:lz,
(34) _ [(0 0]J?':zi_i_ [(Vig)n —(Vigr)12A7F,] .

LI)a (LE)2 0 (Vi)22

K3

I

=2 _ 7. 1—3 1—3
Ji—l,i — PaLz—ZJi—Zyi + Ji—l,i'

By Lemma 4.4 (i), Jf__g’i =0, and so

- i 0 (Vi
(35) Jz'—12,z' = Ji—ii = [0 (0)12] .
By combining (35) and (34), we obtain

Ji-l = [(Vir)n =(Vig)12AF]
ot 0 (Li_1)21(Vi)1z + (Vi)az

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 21

Substituting this expression in (33), and looking at the (2,1) and (2,2) blocks of the product, we find that
fori=3,...,k—1,

(36)
(37)

= (Ii): (Vz+1)11 + (Vigr)n))
= = [(Vig1)2z + (LF)21 (Vigr)12]) ATF L+ (L)22 [(Vi)2z + (L 1)21(Vi)12] -

Consideration of the special cases i = 1 and ¢ = 2 shows that (with the convention Ly = I) the formulae

(36) and (37) hold in these cases as well. From (36),

0
0

[(L#)a1 | I] Eg:i;i EK:SZ [0 | 21(Vig1)12 + (Vig1)a2]

Since [(E?)zl | I] has full rank and Vi1, is orthogonal, (L?)21(Vig1)12 + (Vig1)22 is nonsingular. Hence we
can define the transformation

(38) yitt = (L)1 (Vigr)rz + (Viga)a2] " 20HY,

for i = 1,...,k — 2, with y = zl. Substituting in (28) from (38), we have the following recurrence for
1=2,...k:

(39) Yo = APy (L 1)21 (Vidiz + (Vi)aa) T (L 1)212 + 24)-
Theorem 4.1 implies that this recurrence is stable. Examination of the other term in (28) leads to

(=D = (L)nzt +072 2 +(Lz Dzt
i—1
= Z(L V127 +Z§+Z 11Zb
ji=1

Since the components of E]z are bounded in magnitude by 1, and since the recurrence underlying zJ is stable,
there is no possibility of ||z} || being exponentially larger than ||z||.
Having shown that forward substitution involving the factor L is stable, we turn to the back substitution,

which involves U.
From (29) and (32), we have that

(40) JY JF=UDU = JT =UD.

Since J is both block lower Hessenberg and block upper triangular, it must be block upper bidiagonal. We
wish to verify that the solution # of the system

(41) Ux =72
does not have ||z||/||Z]] exponential in k. By an orthogonal change of variables DTy =z, (41) becomes
(42) UDz =24 JUs =2

We can, therefore, prove the desired result by showing that back substitution with both J and U is stable.
For the case of U, this is best seen by partitioning the (k+1)n—vectors Z and y in the usual way, namely,

= =1 =1 =2 =2 k+1 —k-l—l
L = (xbaxaaxbaxaa b ;)
_ 1 k+1 k-I—l
Yy — (ybayaaybayaa"'ayb aya)

To solve UZ = y, we first back substitute to find the solution of

i

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs

and then perform the following recurrence for i =k —1,k—2,...

=1
Ly

B i
7; [Y
xa

(43) Ya

ey}

RIESR

1 =i 12 =i | —it+1
ATy — AT, T

=i k41
x, — Tz,

- —it1 k41
] + L [QZJH %H]
xa xa

Componentwise, (43) is

22

1:

bl

], i=k—1,k—2,...,1.

vh
Yo

From Theorem 4.1, T; decays exponentially with i, so the z%, i = 1,2,...,k — 1, remain bounded. The
homogeneous part of the first recurrence is

= (Al

Again, we appeal to Theorem 4.1 to deduce that this is stable.

For the back substitution with J, we again refer to the left-hand side of (29) to find expressions for J; ;
and J; ;41. First, from Lemma 4.4 and the fact that each J? is lower Hessenberg, we have fori =1,..., k—1,
that

T

_ g _ Flgi—1
Jiit1 = ii4+1 — L; J; 541

bk = BRI i = 2 (e]

0

Second,

Jii=Jl = LI = LHP LY T2 +

[

and since

i—2 _ p 72 7i-3 -3 _
JiZi =Pl o ;T + 0 = [

o O
o =
| I

we obtain by substitution that

Su=li {[0 (L] " [e]}

(This formula also holds in the special cases i = 1 and ¢ = 2, with a simplified derivation.) Given the system
Jy = Z, partitioning in the usual way, and using (25), we obtain for i = 1,...,k — 1, that

—(Vig1)12A7,
(Vi)az

Jii + Tyt = (L)

Ea IV R

- 72 —(Vig1)12A77,
0 (L7)21(Vi)12 + (Vi)aa

It follows immediately that

Yo = (L7 1)1 (Vi)io + (Vi)ae] 7120,

1,...,k — 11s governed by a stable

exactly as in (38), and from (39) we know that the sequence of y’, i
recurrence. For the remaining components,

vh = (Vie) T (25 4+ (Vign) 1227710 — (Vig) 2yt

(Vig1)11 is clearly nonsingular, since it is a diagonal block in the nonsingular upper triangular matrix J.
Recall that for i = 2,3,...,k, V; = O;_1Q;, where O;_1 is a permutation matrix and @); is generated as in
(17) and (18). Tt is reasonable to expect that the behavior of the sequence {Q; } is governed by the behavior of

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 23

some solution to the underlying continuous Lyapunov equation (see, for example, [2, 9]). Therefore, it tends
to depend on i/k rather than k. Since, by observation, the permutation matrices O? ;| are also independent
of the discretization (they tend to change at indices that correspond to fixed points in the interval [a, b]), we
can safely make the following assumption:

AssuMPTION 3. ||(Vig1)Till2 € K3, i =1,... k, where K3 is independent of k.

The end results of the discussion above can be stated as a theorem:

THEOREM 4.5. If Assumptions 1, 2 and 3 hold, then the linear system (3) arising from (1)-(2) can be
solved in a stable way by using the “serial” version of Algorithm SLU.

Stability of the multipartition versions of SLU can be proved in a similar way. As an aside, we note
that the “standard” error analysis for Gaussian elimination factorizations (which would take account of the
structure of the coefficient matrix in (3), but not the dichotomy properties of the underlying ODE) actually
gives tighter bounds as the number of partitions increases, because the upper bound on element growth
during the factorization decreases. For the serial version, element growth of 0(2(’“"'1)”) could in principle

occur in the last block column during elimination with row partial pivoting. For the “cyclic reduction”
version, this bound is only (271°8%) (i.e., O(k")).

5. Extension to Problems with Multipoint Conditions or Algebraic Parameters. Finally, we
describe the extensions of SLU to problems with parameters, or multipoint/integral side conditions. We have
already observed that all variants of SLU are simply Gaussian elimination with row partial pivoting, applied
to a reordered coefficient matrix; for example, “serial” SLU is obtained by applying row partial pivoting to
(20). In this section, we show serial SLU orderings analogous to (20) for these more general problems.

One form of the algebraic-parameter problem [2, p. 322] is

Y =M@, ANy +q(t, A), tefa,b], yeR', AeR
Bay(a,) + Byy(b, A) = d(}), d e R,

If this problem is linearized with respect to A, and a finite-difference or multiple shooting method is applied,
the following extended form of (3) is obtained:

B, By Zg zl d(A)
A1 01 Zl 52 fl
(44) Ay Oy 4 . = J2
. : - :
A Cy Zp)| fr
Rearranging rows and columns, we obtain
[01 Al Z1 1
Ay O 0 7
As (s 0 73
A= : :
Ck—l 0 Zk—l
Ay | Cy O A
L By B. Zo |

We can now proceed with SLU exactly as described in Section 2. The major difference is that the G; blocks
will now have n 4 r columns, rather than n.
The multipoint side condition problem (see [2, pp. 6,323]) is

vy =MMy+qt), t€[ab], yeR,

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 24
J 7
a=§ <& <...<E&=b

When the points €1, ..., &y are included in the finite difference or multiple shooting mesh, the generalization
of (3), with some trivial row reordering, is

[A 4
Ay Oy
51 fi
52 f2
53 — .
(45) 4G - | :
. . : fe
: Sk+41 d
Ay Gy
| By 0 ... 0 By 0 ... By |
Taking the transpose of the coefficient matrix, we obtain
- A’%” B’:{’ -
Cr AT 0
ct :
(46) AT = o AT Bf
cr o 0
AT
I cf B |

Clearly, (46) differs from (20) only in that the last block column contains some extra nonzeros. Since SLU
fills out this last column in any case, this is of little concern. Hence, (45) can be solved by applying SLU to
AT rather than A. SLU computes a factorization of the form

PATQ =1LU,
where P and () are permutation matrices. Since
As=f o UTLT(Ps)=QTf,
the solution of (45) is obtained by performing a forward substitution with U7 and a back substitution with

L.
If the multipoint condition in (45) is replaced by an integral condition of the form

(47) | B ar=a

then appropriate discretization of (47) will produce a problem of the form (45), with J = k4 1. The resulting
technique provides an alternative to the popular approach of introducing artificial dependent variables to
obtain a new problem with boundary conditions only.

REFERENCES

[1] U. M. AscHER AND P. S. Y. CHAN, On parallel methods for boundary value odes, Computing, 46 (1991), pp. 1-17.

PARALLEL ELIMINATION FOR BOUNDARY VALUE ODEs 25

[2] U. M. AscHER, R. M. M. MATTHELJ, AND R. D. RUSSELL, Numerical Solution of Boundary Value Problems for Ordinary
Differential Fquations, Prentice-Hall, Englewood Cliffs, 1988.
[3] D. L. BRowN AND J. LORENZ, A high order method for stiff boundary value problems with turning points, SIAM Journal
on Scientific and Statistical Computing, 8 (1987), pp. 790-805.
[4] L. Dieci, M. R. OsBORNE, AND R. D. RUSSELL, A Riccati transformation method for solving linear BVPs. I: Theoretical
aspects, SIAM Journal on Numerical Analysis, 25 (1988), pp. 1055-1073.
[5] G. H. GoruB aND C. F. VaN LoaN, Matriz Computations, The Johns Hopkins University Press, Baltimore, MD, sec-
ond ed., 1989.
[6] H. B. KELLER AND M. LENTINI, Invariant imbedding, the bow scheme and an equivalence between them, STAM Journal on
Numerical Analysis, 19 (1982), pp. 942-962.
[7] M. LENTINI AND V. PEREYRA, An adaptive finite difference solver for monlinear two-point boundary value problems with
mild boundary layers, SIAM Journal on Numerical Analysis, 14 (1977), pp. 91-111.
[8] R. M. M. MATTHEL, Stability of block LU-decompositions of matrices arising from BVP, STAM Journal on Algebraic and
Discrete Methods, 5 (1984), pp. 314-331.
[9] , Decoupling and stability of algorithms for boundary value problems, SIAM Review, 27 (1985), pp. 1-44.
[10] J. M. VaRAH, Alternate row and column elimination for solving certain linear systems, SIAM Journal on Numerical
Analysis, 13 (1976), pp. 71-75.
[11] S. J. WRIGHT, Stable parallel algorithms for two-point boundary value problems, Tech. Rep. MCS-P178-0990, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, September 1990.

